from(X) → cons(X, n__from(s(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
from(X) → cons(X, n__from(s(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
ACTIVATE(n__from(X)) → FROM(X)
from(X) → cons(X, n__from(s(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
ACTIVATE(n__from(X)) → FROM(X)
from(X) → cons(X, n__from(s(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
ACTIVATE(n__from(X)) → FROM(X)
from(X) → cons(X, n__from(s(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
from(X) → cons(X, n__from(s(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
SEL1 > activate1
s1 > activate1
from1 > activate1
from1: multiset
SEL1: [1]
s1: multiset
activate1: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
from(X) → cons(X, n__from(s(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X